Nosema bombycis (Microsporidia) suppresses apoptosis in BmN cells (Bombyx mori).
نویسندگان
چکیده
Nosema bombycis (N. bombycis, Nb) is a fungus-related and obligate intracellular parasite that causes chronic pebrine disease in the silkworm. After infecting the host, spores obtain energy from host cells and survive for several days. This symbiosis between the pathogen and the host cell suggests that N. bombycis prevents apoptosis and reactive oxygen species (ROS) production of host cells to create the optimal environmental conditions for its growth and development. In this study, different methods were used to prove that N. bombycis suppressed apoptosis in BmN cells. Flow cytometry analysis results showed that spores suppressed apoptosis of BmN cells at 2 and 5 days after infection (P < 0.05). Compared with actinomycin D (ActD) treatment, apoptosis of BmN cells was apparently reduced after spore infection (P < 0.01). Forty-eight hours after infection, the ROS production of BmN cells was down-regulated compared with that after ActD treatment for 6 h. Furthermore, N. bombycis prevented the formation of apoptosomes by down-regulating the expression of apaf-1 and cytochrome C. In addition, N. bombycis also up-regulated the expression of buffy. Western blot analysis demonstrated that spores decreased the level of host cytochrome C at 48 and 98 h post infection. Thus, our results suggested that N. bombycis inhibited the mitochondrial apoptotic pathway of the host cells to create an optimal environment for its own survival.
منابع مشابه
A comparative study on artificial germination of two microsporidia under the neutralization method
Lamerin microspridia (Lbms) isolated from Lamerin breed of the silkworm, Bombyx mori, L. and the standard strain Nosema bombycis, were induced to germinate artificially by two-step procedure. Fresh percoll purified spores were activated by incubating them in potassium hydroxide solution (KOH) (pH 11.00) and germinated artificially by using phosphate buffer saline (PBS), (pH 7.00). Germinated sp...
متن کاملGenome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis
Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses...
متن کاملExpression and localization of the spore wall protein SWP26 of Nosema bombycis in the silkworm BmN cell line
The microsporidian spore wall proteins, as the main components of the spore wall, play a key role in spore adherence to host cells and in recognition of the parasite by the host during the invasion process. In this study, we used the Bac-to-Bac baculovirus expression system to express the spore wall protein SWP26, fused to enhanced green fluorescent protein (EGFP), in the silkworm BmN cell line...
متن کاملIdentification, Diversity and Evolution of MITEs in the Genomes of Microsporidian Nosema Parasites
Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous DNA transposons, which are widespread in most eukaryotic genomes. However, genome-wide identification, origin and evolution of MITEs remain largely obscure in microsporidia. In this study, we investigated structural features for de novo identification of MITEs in genomes of silkworm microsporidia Nosema bombycis a...
متن کاملQuantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions
The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 47 9 شماره
صفحات -
تاریخ انتشار 2015